
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Web service platform to provide access to maize
diversity data
Abhinav Vinnakota
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Vinnakota, Abhinav, "Web service platform to provide access to maize diversity data" (2015). Graduate Theses and Dissertations. 14734.
https://lib.dr.iastate.edu/etd/14734

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14734?utm_source=lib.dr.iastate.edu%2Fetd%2F14734&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Web service platform to provide access to maize diversity data

by

Abhinav Vinnakota

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

 MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Leslie Miller, Major Professor

Carson Andorf

Samik Basu

Iowa State University

Ames, Iowa

2015

Copyright © Abhinav Vinnakota, 2015. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this work to my parents: Mr. Gupta Vinnakota and Mrs.

Radha Vinnakota for their constant support throughout my life, especially during my

Master’s Education away from home.

www.manaraa.com

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... iv

LIST OF TABLES ... v

NOMENCLATURE .. vi

ACKNOWLEDGMENTS ... vii

ABSTRACT………………………………. .. viii

CHAPTER I INTRODUCTION: ... 1

CHAPTER II RELATED WORK ... 6

CHAPTER III MODEL .. 12

CHAPTER IV IMPLEMENTATION ... 18

 GBS Data…..…. .. 19

 Tassel Library .. 19

 Java Wrapper ... 21

 Web Service... .. 23

 Web Client…. .. 24

CHAPTER V CONCLUSION & FUTURE WORK ... 33

 Conclusion ... 33

 Future Work ... 34

REFERENCES .. 35

APPENDIX CODE ... 37

www.manaraa.com

iv

LIST OF FIGURES

 Page

Figure 1 High level Architecture .. 3

Figure 2 Tassel desktop application screenshot ... 10

Figure 3 Web service platform internal design .. 14

Figure 4 High level Architecture .. 18

Figure 5 Form to demonstrate the functionality of service.php – home.php 26

Figure 6 JSON API specification for service.php .. 26

Figure 7 Example output file from service.php in HapMap format 28

Figure 8 Form to demonstrate the functionality of

 milestone_service.php – milestone.php .. 29

Figure 9 JSON API specification for milestone_service.php 29

Figure 10 Example output file from milestone_service.php in text format 30

Figure 11 Form to demonstrate the functionality of

 milestone2_service.php – milestone2.php .. 31

Figure 12 JSON API specification for milestone_service2.php 31

Figure 13 Example output file from milestone2_service.php in text format 32

www.manaraa.com

v

LIST OF TABLES

 Page

Table 1 Important use cases from the survey .. 16

Table 2 Command line arguments for wrapper .. 21

Table 3 Web service URIs .. 25

Table 4 Web client URIs ... 25

www.manaraa.com

vi

NOMENCLATURE

GBS Genotyping by sequencing

HDF5 Hierarchical Data Format version 5

API Application Program Interface

DNA Deoxyribonucleic Acid

REST Representational State Transfer

JSON JavaScript Object Notation

NSF National Science Foundation

NAM Nested Association Mapping

SNP Single-Nucleotide Polymorphism

NCBI National Center for Biotechnology Information

VCF Variant Call Format

IDE Integrated Development Environment

PAVs Present and Absent Variations

JAR Java Archive

URI Uniform Resource Identifier

PHP Hypertext Preprocessor

IUPUC International Union of Pure and Applied Chemistry

www.manaraa.com

vii

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Leslie Miller, and my committee

members, Dr. Carson Andorf, and Dr. Samik Basu, for their guidance and support

throughout the course of this research.

In addition, I would also like to thank my friends, colleagues, the department

faculty and staff for making my time at Iowa State University a wonderful experience. I

want to also offer my appreciation to those who were willing to evaluate my work and

give advice, without whom, this thesis would not have been possible.

www.manaraa.com

viii

ABSTRACT

 Maize is one of the most important crops in the world. The maize genome

is very complex and has huge genetic diversity. To understand the genome and its

diversity the genes were sequenced. New approaches for sequencing like genotyping by

sequencing (GBS) were developed which led a flood of diversity data. This led to a data

storage and accessibility problem. The available data was stored in HDF5 format.

Accessing the data through various tools was very complicated. The data was not easily

accessible on the internet.

We tackle all these issues and provide a better experience for the user. In

particular, we create a big data database with modern techniques including web service

tools and an API to query the data and present it in a format useful to the maize

community.

www.manaraa.com

1

CHAPTER I

 INTRODUCTION

Maize is one of the most important crops in the world. In America, 90 percent of

the grain produced comes in the form of maize [1]. It is used as human food, animal feed

and also has many industrial uses. Maize was chosen as a model research plant in the

early 20th century partly because its traits were ideal for genetics experiments. The maize

genome is very complex and has huge genetic diversity. Two maize varieties can show as

much DNA sequence variation as two different species [2]. Some genes in one maize

variety may not be present in another maize variety. For this reason, United States

Department of Agriculture’s (USDA) Plant Introduction Station in Ames, Iowa holds

over 19,000 different samples of corn from around the world. Due to its importance

scientists, breeders and seed companies worked on improving maize production. They

created hybrid vigor, or heterosis, when two different inbred varieties are crossed to

produce more robust hybrid offspring. The hybrids can greatly increase crop productivity

and are used in commercial corn production. Scientists are still trying to fully understand

the molecular basis of heterosis. Maize genomic sequences can be used to help them

better understand the reasons behind heterosis’s success.

Sequencing is the process of determining the order of nucleotide bases (A –

adenine, C - cytosine, T - thymine, and G - guanine) within a stretch of DNA. Publically,

the maize research community has one available reference sequence (B73 line) [3]. In

2011, Elshire et al. developed a new approach for sequencing genomic data called

genotyping by sequencing (GBS) [11]. It is a sequencing procedure that provides a large

www.manaraa.com

2

number of markers across the genome at low cost per sample. A genetic marker is a gene

or DNA sequence with a known location on a chromosome that can be used to identify

individuals or species or phenotypes (observable characteristics). This approach works

well for species with high diversity and large genomes like maize. The maize genome has

an approximate size of around 2.4 billion base pairs [4]. GBS has led to a large scale

genome sequencing by different research groups and companies. The GBS data produced

is very large. The most recent data set used for this work contains 1.7E10 data points

(17,280 lines at 955,690 SNPs. SNPs are single-nucleotide substitutions of one base for

another that occur in more than one percent of the general population). There exists larger

datasets, but they are not publicly available.

The maize community would benefit from getting access to this data. Researchers

and breeders would be able to use this data to create better crops. As the data is being

sequenced in different places, they are stored in different formats. Some data exists in a

flat file consisting of tens of gigabytes. It is a cumbersome process if you want to figure

out which nucleotide is present in a particular line at a specific position in a specific

chromosome. In the original format, you either had to browse through the flat files

manually to look up for the value or you needed to learn a new tool which the creator of

the dataset developed. If you plan on looking at the same value in a different dataset you

will have to learn another new tool or browse the dataset manually again. Browsing

through these large datasets is not a simple task. Depending upon the format, the text file

may contain more than 10,000 columns. Browsing through that file and identifying the

specific position is a time consuming task for the researchers and breeders. At the

moment, almost every research group has their own tool for their datasets. This requires a

www.manaraa.com

3

steep learning curve for anyone trying to use the data. In addition, a lot of the tools are

still under active development or do not have long term funding. Lastly, running the tools

on one’s own personal computer is very resource intensive and will take a considerable

time to load the dataset.

Our goal is to tackle all these problems and provide a better user experience when

accessing these datasets. We built a foundation layer which will work with the most

common data sets and be flexible to accept newer types of data, process it and present

data in a format readable by both machines and users. Some users would like access to

raw data while others want to ask questions about the data to get specific answers. We

want to accommodate both types of requests. To do this we created a big data database

with modern techniques including web service tools to allow querying of this data and

present the data in a format which would be useful to the maize community.

Figure 1. High level architecture.

www.manaraa.com

4

The high level architecture of our software solution is shown in Figure 1. Block 1

is the GBS data which has been sequenced by various research groups. Block 2 is the

layer above the raw data. It is an open source library package which provides various

functions to access and query the data. The one used is called Tassel [5], it is under active

development by the Buckler Lab at Cornell University. The library package is written in

Java and handles HDF5 [6] data format very efficiently. HDF5 is a hierarchal data format

to store biological big data efficiently.

Block 3 is the solution I developed. It is a Java wrapper around the Tassel

libraries. It utilizes the functions Tassel provides and uses them to answer the queries

asked by the users. This block is written in Java to ensure compatibility with the Tassel

libraries. However, interaction with this solution is language independent since we

implement the communication using the REST [7] API with JSON [8] objects. REST,

which stands for representational state transfer is a one of the best software architecture

style for creating scalable web services. JSON, which stands for JavaScript Object

Notation is an open standard format that uses human readable text to transmit data objects

between a server and web application. REST and JSON together makes it very easy to

interact with other services and remain language independent. This block takes JSON

input from web applications, processes the request and returns the output in a JSON

format for the web applications to display.

Block 4 is the set of tools which will be developed by the MaizeGDB [9] group

which will utilize the data and represent it in a visually appealing way to the users. I

worked closely with the team to make sure they got the data in their required format for

visual representation. Block 5 is a web application layer developed to demonstrate the

www.manaraa.com

5

functionality of the solution. It is a simple form which would take input from the user,

convert it into JSON object and query the Java API. It gets a JSON reply from the API

which it uses to display the result. To show language independence, I developed this

block in PHP.

Block 6 represents the future possibilities and how any 3rd party web applications

can use the data. Anyone can query the Java API and get results. They can further process

the results and provide more insight into the data. They can also do multiple queries and

collate them to form a better picture.

Next, I summarize my contributions to the project. I created the web service

platform which will accept JSON data requests. The tool uses the requests to identify the

set of Tassel functions which need to be executed. It then runs the Tassel functions,

which will search the database and return the requested data. The data is used to answer

the question which was asked in the request. The web service will create an answer in

JSON format for the request and send it back to the requesting client.

The remainder of this thesis builds upon the core ideas introduced in this chapter.

Chapter II consists of related work done and how they try to solve the data accessibility

problems. Chapter III provides details on how we developed the solution. Chapter IV

consists of the implementation details. Chapter V summarizes our accomplishments and

discusses the scope of future work.

www.manaraa.com

6

CHAPTER II

RELATED WORK

 This chapter discusses the terminology used in the thesis, background of this work

along with related work. It also describes how our approach is different from others. A lot

of related work consists of research groups using the genotyping by sequencing (GBS)

[11] technique to sequence data or creating tools to make the data more accessible.

Panzea [10] is a NSF-funded project called “Biology of Rare Alleles in Maize and

its Wild Relatives”. They are investigating the connection between phenotype and

genotype of complex traits in maize and its wild relative – teosinte. They study how rare

genetic variations contribute to overall plant functionality. These studies enrich our

knowledge of evolution, sustainable agriculture, and genetic diversity and conservation.

The project also developed mapping resources for the maize community including the

association panel and the maize nested association mapping (NAM) [12] panel, which

has been used extensively by the maize community for mapping and sampling global

diversity. The resources created via the genetic mapping studies have been used to help

unravel flowering time, height, leaf architecture and planting density, pro-vitamin A

content, and disease resistance. Their biggest contribution has been over 100 scientists

trained by the project. They are leaders in crop genetics and breeding globally. Their

current project focus is on looking at recent mutations in a wide range of germ plasm, and

trying to make predictions at to its effect based on its genomic context and our

understanding of regulation and heterosis.

www.manaraa.com

7

Panzea is one of the biggest data resource for maize diversity data. They host

genotypic and phenotypic data sets. Their latest public “flat file” versions of

prepackaged, genotypic data sets are available for download [13]. These genotypes were

obtained by whole genome sequencing (“HapMap”) [14], GBS [11] or the maize SNP50

chip [15] or traditional SNP assays. The data sets are differentiated by the process which

is used to obtain them. Their latest HapMapV3 dataset consists of 3.7 Terabytes of whole

genome sequence data from 916 maize lines for more than 60 million SNPs. Their latest

GBS data set is called ZeaGBSv2.7, it contains genotypes for 955,690 SNPs at more than

60,000 lines. Only 17,280 lines of 60,000 lines are public. They provide raw and partially

imputed genotypes as HDF5 files with AGPv2 coordinates, HapMap and VCF formats in

AGPv3 coordinates. HDF5 [6] files store big data in an efficient way. HapMap [14] is an

internationally accepted format for representing the genomic data. VCF [16] is a Variant

Call Format that is a text format which stores data in a compressed manner. AGP [17] is a

specification standard which identifies the position of the markers.

Panzea supports two different genotype searches, one for GBS data and the other

for HapMap data. The GBS search tool first asks for the dataset we want to query. It will

give you the basic details of the dataset chosen, list of all the lines (also called taxa)

which are available in the selected dataset. The list is shown as text file in the browser.

Users have to provide their email id, to which the results of the query will be emailed.

Panzea supports HDF5, HapMap, VCF formats which are widely used.

From the user’s perspective, they have to go through the list of lines available

copy the lines which they want to query and then paste them in another window which

will ask for more details regarding the query. The output formats are machine readable

www.manaraa.com

8

but not user friendly. The entire process seems to be cumbersome if a user wants just one

position in the required region of a line.

Genbank [18] is the NIH genetic sequence database, an annotated collection of all

publicly available DNA sequences. Genbank stores all the raw sequence data in their

required format and the data is publicly available. It is designed to provide and encourage

access within the scientific community to the most up to date and comprehensive DNA

sequence information. NCBI places no restriction the on the use or distribution of the

Genbank data.

The International Maize and Wheat Improvement Center [19] also works on

challenges of growing more maize sustainably. They collaborate with national

agricultural research institutions, non-government organizations, community-based

organizations, seed sector organizations, regional research networks, private companies

and advanced research institutions to tackle the problem on a global scale. They provide

diverse, high-yielding maize varieties that withstand infertile soils, drought, pests and

diseases. They have a large data set which is not publicly available. They have 700,000

SNPs at more than 27,000 lines.

“Comprehensive genotyping of the USA national maize inbred seed bank” is a

paper published by Romay et al. in 2013. They use the GBS technique on 2,815 maize

inbred accessions, preserved mostly at the National Plant Germplasm System [29] in the

USA. This collection includes inbred lines from breeding programs all over the world.

They published their finding which included about 681,000 SNPs across the entire

genome, with an ability to detect rare alleles at high confidence levels. More than half the

SNPs in the collection are rare. The data published in the paper is available to be

www.manaraa.com

9

exploited by researchers to answer the problems faced in creating crops for sustainable

agriculture. This data set is highly regarded by the maize community.

 The Buckler Lab for Maize Genetics and Diversity [24] uses functional genomic

approaches to dissect complex traits in maize, cassava and grapes. They exploit the

natural diversity of these plant genomes to identify the individual nucleotides responsible

for complex variation and then apply it to breeding. Buckler Lab created a tool called

Tassel, it is designed for the optimized analysis of crop genomic diversity. Tassel stands

for Trait Analysis by Association, Evolution and Linkage. Tassel is a software package

used to evaluate genotype and traits associations with the characteristics of population

and quantitative genetics. Tassel can handle datasets which are commonly encountered in

the plant community like trails, inbred lines and complex structured pedigrees. It is open

source and Buckler lab encourages people to build tools on their Tassel platform. Tassel

provides various complex functions which are generally used on maize genomic data.

They also have an active discussion group [20] in google groups which answers any

question, technical or scientific. Tassel is designed to work with the HDF5 data sets

which are available from Panzea.

 Tassel consists of two parts, the Tassel standalone desktop application and the

Tassel Java library package. The Tassel library package is the Java software which

interfaces the standalone desktop client and the HDF5 data. This is what they call the

Tassel platform. It is under active development and they keep adding new functions to

fully utilize its potential. The entire code is open sourced and available in their Bitbucket

repository. The Java functions designed are very efficient and quite often use bit

calculations to improve the speed at which queries run. Any developer can use their

www.manaraa.com

10

library package and develop their own implementation of representing the data set.

Buckler Lab also conducts hackathons [21] to encourage development.

 The Tassel standalone application is a GUI tool which is used to browse the

HDF5 data sets. Tassel is currently on Version 5.0 and uses Java Version 1.8. It supports

Windows, Mac and UNIX operating systems. It shows all the lines in the data set as rows

and all the markers as columns. It also provides various filter options, imputing options,

data analysis options and various formats of showing results. A screenshot of the Tassel

desktop application is shown in Figure 2.

Figure 2. Tassel desktop application screenshot.

Tassel also supports HapMap, VCF file formats, though the performance is best

when the file is in HDF5 format. It has a fairly steep learning curve. A lot of users are

www.manaraa.com

11

will not be able to download such huge data. Tassel standalone application is very

memory intensive. A few processes like distance matrix would require us to either

increase the memory used by the application or reduce the input query size so that our

desktop computers can handle it. The desktop computer which I ran the tests the runs on

needed more memory for some operations. The desktop computer I used had latest

available hardware.

 Our solutions will address the shortcomings of the best tools available and

provide a better way to access the data. The next chapter will talk about how we designed

our solutions after carefully analyzing the problems with the existing software and data.

www.manaraa.com

12

CHAPTER III

MODEL

In 2011, MaizeGDB [9] foresaw the rate at which large scale diversity data was

being sequenced. They wanted to be prepared to handle the flood of diversity data and

make it available to the user community. MaizeGDB formed an open collaboration with

iPlant Collaborative [22], SOL Genomics Network (SGN) [23] and the Bucker Lab [24]

at Cornell University. The goal of the collaboration is to solve the problems of efficiently

storing, querying and integrating the data. They also wanted to provide visualization tools

for the public users at MaizeGDB.

To determine the best way to represent the maize data, MaizeGDB conducted a

survey. They asked the users how they would like to use the data and requested a use case

example. They also asked what kind of maize lines the users would be interested in

seeing and how much time the user would be willing to wait for a response.

MaizeGDB predicted that data to be 1.6 million SNPs for a few dozen lines in

2011. They projected it would increase to over 10 million SNPs for 100 lines in 2012.

They foresaw 100,000 lines for over 100 million SNPs coming from several labs in the

next few years [25].

MaizeGDB proposed a tiered approach. The first tier started by making all the

tools and services available for the B73 reference genome [3]. The second tier would add

a set of tools and services to support the NAM lines [12]. The third and fourth tiers would

only offer limited tools and support for up to 1000 lines and eventually the entire

diversity data. Supporting all the tools for all the lines would take years. They wanted to

www.manaraa.com

13

limit the tools for the higher tiers to enable quickly adding support to more lines. The

project was halted in mid-2012 when MaizeGDB had to allocate funds to higher priority

projects. This projected seemed very interesting to me. In 2014, I took up the project.

A traditional relational database cannot handle the data required for this project. If

the data was stored in a table it would have one million rows and tens of thousands of

columns. This was unfeasible for our data. We need to use big data format to handle the

data this large. The best data structure for this data is HDF5 [6]. It is a hierarchal format

which uses an abstract data model which maps the storage model to different storage

mechanisms. The HDF5 library provides a programming interface to a concrete

implementation of the abstract models. This storage format is very efficient to store

biological data. It is also the most preferred storage model for big data in various research

labs [10].

Two systems appeared to be useful for developing our system, Apache Hadoop

[26] and Tassel [5]. Both systems are open source, but Tassel (developed by the Bucker

Lab) was developed to solve the same kinds of issues we needed to deal with. In

particular the Tassel developers had already developed some of the functions that would

have to be implemented for the Apache Hadoop environment. We decided to use Tassel

and build on top of it.

Figure 3 shows the internal design of our web platform. It consists of two parts:

the Java wrapper and a PHP web service. The Java wrapper uses Tassel’s functionality to

query the data and process it. The PHP web service is the communication hub. It receives

requests from clients and interfaces with the Java wrapper, it gathers the result and sends

it to the client.

www.manaraa.com

14

Figure 3. Web Service Platform Internal Design.

We decided to use PHP web service implementing REST [7] API for

communication and JSON [8] data format. REST is a stateless software architecture. It

demands the use of hypertext, which scales very well since the client and server are

loosely coupled. The server is free to change the resource at will. The client needs to only

know the initial URI to perform actions. It allows for rapid evolution of servers and

allows an astronomical number of applications to interact freely on an ad hoc basis [27].

JSON (JavaScript Object Notation) is a lightweight format that is used for data

interchanging. JSON is the de facto standard for transferring data from webserver to the

client [28]. It has a simple structure which is a collection of name value pairs. JavaScript

also recognizes JSON as an object which has major client side advantages when we want

to display the data on the web page.

 These choices of technology for the project allow it to be scalable and modular.

Scalable to make sure we can increase the hardware of the server to efficiently handle all

the incoming requests even under a huge load. Modularity has its own advantage. The

genomic data which we are working with is still being sequenced. It is bound to change

www.manaraa.com

15

in the future. The data may become more detailed or more diverse data will come in fast.

The tool we are going to develop should be able to handle these changes without a major

rewrite of the code. If the architecture is modular we can simply update the piece which

is outdated and the tool will seamlessly work with the new data. It is also true for the web

services, if a new advanced web service is discovered tomorrow it will not be a big hassle

to update the project to support the new service. With scalability, modularity and speed

we came up with a design as illustrated in Figure 3.

The data set we are using currently is from Panzea [13]. It is called ZeaGBSv2.7.

This is their current ZeaGBS build, containing 955,690 SNPs at 17,280 lines which are

publically available. For these samples, both raw and partially imputed data sets are

available in HDF5 files. Imputation is the statistical process of replacing missing data

with substituted values. These files are directly compatible with Tassel.

We had to decide what exactly we want to do with data, how will we show the

data to the users, and what datasets should we choose. Should we dump all the data in

one large data set which will take longer time to query or should we have small sets of

grouped data which users can select which will run faster? Our group decided that we

should use the survey results. These are the most important of the list of use cases from

the survey results:

Looking at the use cases, each one would require a different input and different

processing. We decided to select a simple one, extend it to other use cases if possible then

chose another use case and implement it. The first one we wanted to develop was a

variation of use case number 4. Given a genomic position or range and lines of interest,

retrieve all the SNPs in that region.

www.manaraa.com

16

Table 1. Important use cases from the survey.

1. Between two lines, give me all the amino acid changes based on high quality SNPs

2. Between two lines, give me all present/absent/variations.

3. Given a gene of interest, retrieve all alleles for that gene.

4. Given a genomic position/range, retrieve all the SNPs in that region.

5. Given a maize line, retrieve all SNPs compared to a reference strain (B73).

6. Use the information to mine the best allele for breeding or functional studies.

The second and third questions in the survey were about lines of maize which the

users wants. The second question was ‘how many lines they want the use case to run

against’. The third question was which subset of maize lines the user is most interested

in. The answers varied from only NAM [12] lines to all the lines available. There was no

clear answer. Each user works with different lines and we want to accommodate all of

them. Tassel provides the option of creating data subsets. So we created different subsets

of data according to user interest and the also have an option to query the entire data set.

A critical question was how long the user would be willing to wait to get a

response. The options suggest in the survey were 10 seconds, 1 minute, 10 minutes, 1

hour, 1 day and 1 week. The answers were quite diverse. The users with use cases which

wanted to query all the lines were willing to wait for 1 day or even 1 week. Other users

who have smaller subsets of data were willing to wait for 1 minute up to 1 hour. During

initial testing of Tassel, sample query of the user case against the entire data set to return

www.manaraa.com

17

the data in a specific position it took less than 1 minute. We should remember that this is

a simple query without much data processing. If we had to process the data further it

would require more queries, hence more time. Upon further testing, we were confident

that we could do most of the use cases in under 1 minute.

The next chapter will talk about how we implemented the design, the problems

faced and how we solved them and documentation of the code.

www.manaraa.com

18

CHAPTER IV

IMPLEMENTATION

This chapter will discuss the implementation of the web service platform. The

high level architecture is illustrated in Figure 4. Implementation of blocks 1, 2, 3, and 5

are discussed in the following subsections. Implementation started with setting up the

development environment. Eclipse IDE was used for coding in Java, gedit for coding in

PHP, Bitbucket for code repository, virtual machine client VMware for hosting the

server, Vsphere client for remotely accessing the server, CentOS as the operating system

for the server. Two versions of GBS [11] data from ZeaGBSv2.7 from Panzea [13], raw

and imputed. The raw data is 12 Gigabytes and imputed data is 5.5 Gigabytes. Both the

data sets contains 955,690 SNPs at 17,280 lines in HDF5 format [6]. Qi Sun from Cornell

University supplied a sample wrapper class which he developed on the Tassel platform. It

was used as a starting point during development.

Figure 4. High level Architecture.

www.manaraa.com

19

GBS Data

 The GBS [11] data used is the ZeaGBS build from Panzea [10]. The current

version is ZeaGBSv2.7. Both raw and imputed data is available. It contains 955,690

SNPs at 17,280 lines in HDF5 format [6]. In the implementation, the data sets are loosely

coupled with the rest of the system. Every time the wrapper class is run, the data set

needs to be specified as a command line parameter. This enables us to use multiple data

sets. Some users prefer not to work with the entire data set, they want to work with lines

related to their field of work. They can choose a subset of the data when querying. The

wrapper class provides the functionality required to create the subset. The entire data set

is loaded into an object, then it is filtered according to the required lines. It creates a

smaller HDF5 file with the specified file name. This HDF5 file generated is the subset of

the data. It can be used with the wrapper to query the smaller data set. Implementation of

this function is discussed in detail in the Java wrapper subsection of this chapter. Another

advantage of loosely coupled data is it can be updated very easily. When a new version of

the data set is released, it can be supported with no change in the code. The new data set

needs to be loaded on the server in the required directory and it is ready to work with our

platform. This is an advantage of our modular design.

Tassel Library

 The Tassel [5] library package was developed by The Buckler Lab [24] at Cornell

University. It is a layer on top of the HDF5 data. Tassel has developed functions for

handling the data. It is easier to interact with the data using Tassel then interacting

directly with the data. Tassel is open source and its code repository is present in

www.manaraa.com

20

Bitbucket [30]. Using Tassel was straight forward. There were a couple of issues with

Tassel during the implementation of the use cases. They were resolved by the Tassel

developers immediately.

 During the implementation of the first use case, the position filtering was not

working. Tassel was ignoring the start and end positions. After a lot of debugging, an

error in the sample wrapper class surfaced. If the end position or start position is not

mentioned in the command line arguments they default to zero. The end position value

always defaulted to zero, even when the value was non-zero. Whenever one of the start or

end position values are zero, Tassel considers the entire range of that chromosome. The

variable “EndPhysicalPosition” which takes the value from the command line argument

was overridden by the start position value due to the mistake in the code. We informed Qi

Sun about this bug. He acknowledged it and corrected the sample wrapper class code.

This is one of those very hard to find bugs which is a result of a typo.

 All the Tassel searches are in one format. The entire data set is loaded and then

Tassel filters the data by lines and then filters it by positions until the desired region is

determined. The second and the third use case had a request which is quite the opposite

of this format. Using the given region, list of lines with the same allele value in the same

region. There was no function in the Tassel library which supports this. We tried a brute

force approach, but it was very inefficient. Ultimately we came up with logic which could

be implemented in the Tassel library, which was more efficient. It is a matching function.

It matches the byte value of the given region with the array of byte values and returns a

binary array, 1 representing match and 0 otherwise. The array of byte values are the allele

values present in the same region for the entire data set. I emailed our solution to the

www.manaraa.com

21

Tassel software architect, Terry Casstevens. After a discussion regarding handling of

unknown data, he added the function to the Tassel library. This function was immensely

useful in implementing the last two use cases. The next layer is the web service platform.

It consists of the Java wrapper class and the web service.

Java Wrapper

 The Java wrapper code is available at https://bitbucket.org/abhinav1/tassel-

wrapper. The wrapper is packaged into a JAR file and it needs command line arguments

to process the queries. The file Tassel_gt_server.java handles all the requests. It takes all

the command line arguments and calls the required function depending upon the use case.

The command line arguments are listed in Table 2.

Table 2. Command line arguments for wrapper.

-bf Build the file. If skip, only give the dimensions

-sf source file name

-st source file type (hdf5, vcf, or hapmap)

-df destination file name

-dt destination file type (hdf5, vcf, hapmap or plink)

-tf taxa file name

-ch chromosome name

-start physical start position on the chromosome

-end physical end position on the chromosome

https://bitbucket.org/abhinav1/tassel-wrapper
https://bitbucket.org/abhinav1/tassel-wrapper

www.manaraa.com

22

The three functions which implement the use cases are slice(), sliceNuke(),

sliceRangeNuke(). The slice() function implements the first use case. The sliceNuke()

function implements the second function. The sliceRangeNuke() function implements the

third use case.

The slice() function accepts all the command line arguments from the main

function. Processes all the input data into variables then creates a “GenotypeTable”

object from the source file. Filters the required taxa list and then filters the required

positions. It uses the "ExportUtils” class to export the filtered object to the user requested

format. This function can be used in two ways. When the output format is selected as

HDF5, the “ExportUtils” class has a function which converts the contents of the

“GenotypeTable” object into a HDF5 file. As the slice() function already filters the

contents of the “GenotypeTable” object this function can be used to generate subsets of

the data. These HDF5 files created can again be used to query the data. When the output

format is any other format (HapMap, VCF), the slice() function creates the output file in

the required format using the “ExportUtils” class. It writes the output file into the output

destination selected and exits.

The sliceNuke() function accepts all the command line arguments from the main

function. It processes all the input data into variables and then creates a “GenotypeTable”

object from the source file. It filters the required taxa and then filters for the required

position. The object now contains only one value. The single value contained in the

object is the required allele. It then retrieves the unique site number of the allele. It

creates a byte array of all the allele values at the same site for all the taxa lines using the

“genotypeAllTaxa” function. The byte array of all the allele values in the data set for the

www.manaraa.com

23

specific position and the byte value of the single allele value in the same position are

compared by the “calcBitPresenceOfDiploidValueFromGenotype” function. This

function returns a “BitSet” object, it is a binary array which represents the result of the

comparison. A positive match is represented by 1 and a negative match is represented by

0. Then the function “getIndicesOfSetBits” function of the “BitSet” object is used to

return an integer array. The integer array contains list of all the positions of the binary

array which is a 1. The integer array is used to iterate through the list of lines in the entire

data set, which is an unfiltered “GenotypeTable” object. “BufferedWriter” object is used

to create the custom output format which lists all the lines which have the same allele

value at the required position. It writes the output file into the output destination selected

and exits.

The sliceRangeNuke() function accepts all the command line arguments from the

main function. It processes all the input data into variables then creates a

“GenotypeTable” object from the source file. It filters the required taxa and then filters

the required range of positions. Then it retrieves the range of unique site numbers for the

corresponding range of positions and stores them in an integer ArrayList. For each site

we extract the byte value for the allele and create the byte array of all the allele values in

the data set for the specific position and compare using

“calcBitPresenceOfDiploidValueFromGenotype” function. Each comparison returns a

“BitSet” object, it is stored in a “BitSet” ArrayList. All the individual “BitSet” objects

which are stored in the ArrayList are combined to create one object. The bitwise AND

operation is used to combine them. The combined “BitSet” object represents the lines

which have the same sequence of alleles in the given range of positions. Then the

www.manaraa.com

24

function “getIndicesOfSetBits” function of the “BitSet” object is used to return an integer

array. The integer array contains list of all the positions of the binary array which is a 1.

The integer array is used to iterate through the list of lines in the entire data set, which is

an unfiltered “GenotypeTable” object. The “BufferedWriter” object is used to create the

custom output format which lists all the lines which have the same sequence of alleles in

the given range of positions. It writes the output file into the output destination selected

and exits. When the output file is created in the destination and the wrapper class exits,

the web service uses the output file and communicates it with the client.

Web Service

 The PHP web service code for is available at

https://bitbucket.org/abhinav1/datadiversity. The server is on a virtual machine based on

the CentOS operating system. The virtual machine allows the hardware configuration of

the server to be changed as needed. Memory can be increased to allow more memory

intense operations. The web service is built using REST [7] and JSON [8].

 When the web service receives a request from a client, it decodes the JSON

request and stores the input request details in local variables. It assigns a unique code to

each incoming request based on the micro second at which the request was received. This

code is used to identify every request uniquely. According to the input request, the set of

command line arguments are generated and the Java wrapper JAR function is executed

with the command line arguments. As soon as the output file is generated, a JSON

response is created using the directory of the output file. The response is sent to the

client.

https://bitbucket.org/abhinav1/datadiversity

www.manaraa.com

25

There are three different instances of the web services to accept the requests for

three different use cases. The web service URIs are listed in Table 3. The three web

services have slightly different APIs, because the use cases require different input. The

API specifications are easier to understand with an example. The examples are illustrated

in the next section.

Table 3. Web service URIs.

Use case 1 http://abhinav2.gdcb.iastate.edu/Diversity/service.php

Use case 2 http://abhinav2.gdcb.iastate.edu/Diversity/milestone_service.php

Use case 3 http://abhinav2.gdcb.iastate.edu/Diversity/milestone2_service.php

Web Client

 A PHP client was developed to demonstrate how of our web service platform. It

consists of three different forms for the three use cases. When a form is submitted, the

client takes all the input details entered in the form and creates a JSON format of the data.

It then sends the request to the corresponding URI with the JSON data. The server

processes the request and send the JSON response. The client receives the JSON response

and open the output file link in the browser. The URIs of the three forms are listed in

Table 4.

Table 4. Web client URIs.

Use case 1 http://abhinav2.gdcb.iastate.edu/Diversity/home.php

Use case 2 http://abhinav2.gdcb.iastate.edu/Diversity/milestone.php

Use case 3 http://abhinav2.gdcb.iastate.edu/Diversity/milestone2.php

http://abhinav2.gdcb.iastate.edu/Diversity/service.php
http://abhinav2.gdcb.iastate.edu/Diversity/milestone_service.php
http://abhinav2.gdcb.iastate.edu/Diversity/milestone2_service.php
http://abhinav2.gdcb.iastate.edu/Diversity/home.php
http://abhinav2.gdcb.iastate.edu/Diversity/milestone.php
http://abhinav2.gdcb.iastate.edu/Diversity/milestone2.php

www.manaraa.com

26

The three use cases are accessible from the URIs in Table 4. They will open a

form in the web browser. The use cases are better illustrated with the examples. The form

for the first use case is in Figure 5. It is hosted in home.php. The first use case is: Given a

genomic position or range and lines of interest, retrieve all the SNPs in that region.

Figure 5. Form to demonstrate the functionality of service.php – home.php.

Figure 6. JSON API specification for service.php.

www.manaraa.com

27

The API Specification for home.php is represented in Figure 6. It requires the

chromosome, positions, start position, end position, taxa array (list of lines), output

format, dataset and version of the wrapper class. It returns only the URI of the output file.

Figure 7 shows the output file generated for this request.

www.manaraa.com

28

Figure 7. Example output file from service.php in HapMap format.

2
8

www.manaraa.com

29

The second use case is: Given a specific genomic position and a specific line what

is allele present? List all the lines which have the same allele in the same genomic

position. . The form for the second use case is in Figure 8.

Figure 8. Form to demonstrate the functionality of milestone_service.php –

milestone.php.

The API Specification for milestone.php is represented in Figure 9. It requires the

chromosome, position, taxa, dataset and version of the wrapper class. It returns only the

URI of the output file. Figure 10 shows the output file generated for this request.

Figure 9. JSON API specification for milestone_service.php.

www.manaraa.com

30

Figure 10. Example output file from milestone_service.php in text format.

www.manaraa.com

31

The third use case is: Given a range of genomic positions and a specific line what

is sequence of alleles present? List all the lines which have the same sequence in the

same range of genomic positions. The form for the third use case is in Figure 11.

Figure 11. Form to demonstrate the functionality of milestone2_service.php –

milestone2.php.

The API Specification for milestone2.php is represented in Figure 12. It requires

the chromosome, start position, end position, taxa, dataset and version of the wrapper

class. It returns only the URI of the output file. Figure 13 shows the output file generated

for this request.

Figure 12. JSON API specification for milestone2_service.php.

www.manaraa.com

32

Figure 13. Example output file from milestone_service.php in text format.

www.manaraa.com

33

CHAPTER V

CONCLUSION & FUTURE WORK

Conclusion

Our work focuses on creating a platform on which users will be able to access the

maize diversity data seamlessly. It is a difficult problem to solve. There is always new

data being sequenced with more accuracy and detail. There are complications to run huge

analysis on the big data which run quickly. We tackled some of the issues in our solution.

We created a web platform with the latest technologies. It’s based on REST with

JSON which is widely used by client applications and web servers. It can give you the

raw data or it can answer meaningful questions (use cases). We implemented three of

those questions. We provide an easy way to implement more questions. We provided

various output formats and the platform is flexible to add more. Formats useful for other

applications (HapMap and VCF) and formats which are readable (Text) by the user are

supported. We developed a PHP client to demonstrate the use of the web platform. Users

are given a choice of which data set they want to query. We also have a process in place

to create sub data sets on request by the users. Our API is documented, it can be used by

other applications which can build on top of our output. The entire source code for both

the web service and the wrapper class are available online and up to date. We believe we

have made an easier way for users to access diversity data.

www.manaraa.com

34

Future work

 We have just finished the platform, there is a lot of scope for future work. The

most exciting work will be building tools on this platform. MaizeGDB plans on building

a set of visualization tools which take uses the output from the web service and represent

the diversity data in a visually appealing way. I am currently working to finalize the

format which is required for their input. We can support various 3rd party tools which can

use our API and build tools on the data.

 The platform can also be improved in various ways. We can implement more use

cases which will add more functionality. Adding a new case is as simple as writing a

function with the logic. The connection with the data set, reading the data into objects

and creating the output format are already defined and can be reused for the new use

cases. Interesting use cases will be to identify haplotypes. Haplotypes are blocks of

regions which are similar. Similarity in haplotypes does not have a proper definition as of

now. Implementing percentage based matching is also an interesting idea. Some of the

users may not be looking for a 100% match across a wide range of positions. Giving an

option where a user can choose what percentage they want will be a good feature. For

example given a genomic region and a specific line will return the list of lines which have

the same alleles present in the same region with 10% tolerance. It will result in 90%

matching. Another interesting use case is identifying genetic diversity between two or

more lines. MaizeGDB is conducting another survey which will give more insight into

how the users want to utilize the data and ideas for more use cases.

www.manaraa.com

35

REFERENCES

[1] “The Importance of Corn In The American Economy” -

http://www.offthegridnews.com/off-grid-foods/the-importance-of-corn-in-the-

american-economy/

[2] “The Maize Genome” poster by Anne W. Sylvester, Patrick S. Schnable, and

Rob Martienssen

[3] “The B73 Maize genome: complexity, diversity and dynamics” -

http://www.ncbi.nlm.nih.gov/pubmed/19965430

[4] “Maize: The Genome Sequence Itself” -

http://www.jamesandthegiantcorn.com/2009/11/20/maize-the-genome-sequence-

itself/

[5] “TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline”

- http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090346

[6] “What is HDF5?” - https://www.hdfgroup.org/HDF5/whatishdf5.html

[7] “RESTful Web Services” -

https://books.google.com/books?id=XUaErakHsoAC&hl=en

[8] “The JSON Data Interchange Format” - http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf

[9] “MaizeGDB becomes ‘sequence-centric’” -

http://database.oxfordjournals.org/content/2009/bap020.full?ijkey=NtoVnRZ51ir

h47m&keytype=ref

[10] “The Maize Diversity Project” - http://www.panzea.org/

[11] “A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity

species.” - Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES,

Mitchell SE -

http://www.ncbi.nlm.nih.gov/pubmed/21573248?dopt=Abstract&holding=f1000,f

1000m,isrctn

[12] “Genetic Design and Statistical Power of Nested Association Mapping in Maize”

- http://www.genetics.org/content/178/1/539.abstract

[13] “Genotype data download” - http://www.panzea.org/#!genotypes/cctl

http://www.offthegridnews.com/off-grid-foods/the-importance-of-corn-in-the-american-economy/
http://www.offthegridnews.com/off-grid-foods/the-importance-of-corn-in-the-american-economy/
http://www.ncbi.nlm.nih.gov/pubmed/19965430
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090346
https://www.hdfgroup.org/HDF5/whatishdf5.html
http://database.oxfordjournals.org/content/2009/bap020.full?ijkey=NtoVnRZ51irh47m&keytype=ref
http://database.oxfordjournals.org/content/2009/bap020.full?ijkey=NtoVnRZ51irh47m&keytype=ref
http://www.ncbi.nlm.nih.gov/pubmed/21573248?dopt=Abstract&holding=f1000,f1000m,isrctn
http://www.ncbi.nlm.nih.gov/pubmed/21573248?dopt=Abstract&holding=f1000,f1000m,isrctn
http://www.genetics.org/content/178/1/539.abstract
http://www.panzea.org/#!genotypes/cctl

www.manaraa.com

36

[14] “The International HapMap Project” -

http://hapmap.ncbi.nlm.nih.gov/downloads/nature02168.pdf

[15] “A powerful tool for genome analysis in maize: development and evaluation of

the high density 600 k SNP genotyping array” -

http://www.biomedcentral.com/1471-2164/15/823

[16] “The Variant Call Format” - https://samtools.github.io/hts-specs/VCFv4.2.pdf

[17] “AGP Specifications” -

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/agp/AGP_Specification.s

html

[18] “GenBank” - http://www.ncbi.nlm.nih.gov/pubmed/23193287

[19] “CIMMYT” - http://www.cimmyt.org/en/who-we-are

[20] Tassel Google Group - https://groups.google.com/forum/#!forum/tassel

[21] Tassel Hackathon -

https://groups.google.com/forum/#!searchin/tassel/hackaton/tassel/FbFjhqqmjDM

/OaB-de46UsUJ

[22] iPlant Collaborative - http://www.iplantcollaborative.org/

[23] SOL Genomics Network - http://solgenomics.net/

[24] Buckler Lab for Maize Genetics and Diversity - http://www.maizegenetics.net/

[25] Waves of diversity for maize - http://survey.maizegdb.org/diversity/

[26] Apache Hadoop - https://hadoop.apache.org/

[27] Scalability of REST API - http://stackoverflow.com/a/5321470

[28] JSON de facto Standard -

http://fossil.wanderinghorse.net/repos/cson/index.cgi/wiki?name=JSON

[29] National Germplasm Resource -

http://www.ars.usda.gov/main/site_main.htm?modecode=80-42-05-45

[30] Tassel code repository - https://bitbucket.org/tasseladmin/tassel-5-

source/wiki/Home

http://hapmap.ncbi.nlm.nih.gov/downloads/nature02168.pdf
http://www.biomedcentral.com/1471-2164/15/823
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/agp/AGP_Specification.shtml
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/agp/AGP_Specification.shtml
http://www.ncbi.nlm.nih.gov/pubmed/23193287
http://www.cimmyt.org/en/who-we-are
https://groups.google.com/forum/#!forum/tassel
https://groups.google.com/forum/#!searchin/tassel/hackaton/tassel/FbFjhqqmjDM/OaB-de46UsUJ
https://groups.google.com/forum/#!searchin/tassel/hackaton/tassel/FbFjhqqmjDM/OaB-de46UsUJ
http://www.iplantcollaborative.org/
http://solgenomics.net/
http://www.maizegenetics.net/
http://survey.maizegdb.org/diversity/
https://hadoop.apache.org/
http://stackoverflow.com/a/5321470
http://fossil.wanderinghorse.net/repos/cson/index.cgi/wiki?name=JSON
http://www.ars.usda.gov/main/site_main.htm?modecode=80-42-05-45
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home

www.manaraa.com

37

APPENDIX

CODE

The Java code for the wrapper class is included below. It is from the

tassel_gt_server.java file.

package tassel_gt_server;

/**

 *

 * @author Abhinav

 *

 */

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Map;

import net.maizegenetics.dna.WHICH_ALLELE;

import net.maizegenetics.dna.map.Chromosome;

import net.maizegenetics.dna.map.Position;

import net.maizegenetics.dna.map.PositionList;

import net.maizegenetics.dna.snp.ExportUtils;

import net.maizegenetics.dna.snp.FilterGenotypeTable;

import net.maizegenetics.dna.snp.GenotypeTable;

import net.maizegenetics.dna.snp.GenotypeTableBuilder;

import net.maizegenetics.dna.snp.GenotypeTableUtils;

import net.maizegenetics.dna.snp.ImportUtils;

import net.maizegenetics.taxa.TaxaList;

import net.maizegenetics.taxa.TaxaListBuilder;

import net.maizegenetics.taxa.Taxon;

import net.maizegenetics.util.ArgsEngine;

import net.maizegenetics.util.BitSet;

import net.maizegenetics.util.ExceptionUtils;

import net.maizegenetics.util.Utils;

public class Tassel_gt_server {

 /**

 * @param args the command line arguments

 * create_result_file T or F

 *

 */

www.manaraa.com

38

 public static void main(String[] args) {

 if (args.length == 0) {

 System.out.print("No method is specified!\n");

 printUsage("main");

 }

 String method = args[0];

 String[] newargs = new String[args.length-1];

 System.arraycopy(args, 1, newargs, 0, args.length-1);

 if (method.equals("slice"))

 {

 String results = slice(newargs);

 System.out.print(results);

 }

 else if (method.equals("sliceNuke"))

 {

 String results = sliceNuke(newargs);

 System.out.print(results);

 }

 else if (method.equals("sliceRangeNuke"))

 {

 String results = sliceRangeNuke(newargs);

 System.out.print(results);

 }

 else if (method.equals("dbinfo"))

 {

 String results = dbinfo(newargs);

 System.out.print(results);

 }

 else if (method.equals("get_taxa_list"))

 {

 String[] results = get_taxa_list(newargs);

 for (String t:results)

 {

 System.out.println(t);

 }

 }

 else if (method.equals("chr_marker_info"))

 {

 String[] results = chr_marker_info(newargs);

 for (String t:results)

 {

 System.out.println(t);

 }

 }

 else

 {

 System.out.print("The method '"+ method + "' is not

recognized!\n");

 printUsage("main");

 }

 }

 private static String sliceNuke(String[] args)

 {

 //get parameters

www.manaraa.com

39

 ArgsEngine myArgsEngine = new ArgsEngine();

 myArgsEngine.add("-sf", "--sourcefile", true);

 myArgsEngine.add("-st", "--sourcefile-type", true);

 myArgsEngine.add("-df", "--destinationfile", true);

 myArgsEngine.add("-dt", "--destinationfile-type", true);

 myArgsEngine.add("-tf", "--taxa-file", true);

 myArgsEngine.add("-tl", "--taxa-list", true);

 myArgsEngine.add("-ch", "--chromosome", true);

 myArgsEngine.add("-start", "--chr-start", true);

 myArgsEngine.add("-end", "--chr-end", true);

 myArgsEngine.add("-bf", "--build-file", false);

 myArgsEngine.parse(args);

 boolean buildfile = false;

 String source_file = null;

 String source_file_type = null;

 String dest_file = null;

 String dest_file_type=null;

 String TaxaListFile=null;

 ArrayList<String> TaxaArrayList = new ArrayList<String>();

 String ChromosomeStr=null;

 int StartPhysicalPosition = 0;

 int EndPhysicalPosition = 0;

 if (myArgsEngine.getBoolean("-bf"))

 {

 buildfile = true;

 }

 if (myArgsEngine.getBoolean("-sf")) {

 source_file = myArgsEngine.getString("-sf");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a source

file (option -sf).");

 }

 if (myArgsEngine.getBoolean("-st")) {

 source_file_type = myArgsEngine.getString("-st");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a source

file type (option -st).");

 }

 if (buildfile)

 {

 if (myArgsEngine.getBoolean("-df")) {

 dest_file = myArgsEngine.getString("-df");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

destination file (option -df).");

 }

 if (myArgsEngine.getBoolean("-dt")) {

 dest_file_type = myArgsEngine.getString("-dt");

www.manaraa.com

40

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

destination file type (option -dt).");

 }

 }

 if (myArgsEngine.getBoolean("-tf"))

 {

 TaxaListFile = myArgsEngine.getString("-tf");

 File outDirectory = new File(TaxaListFile);

 if (!outDirectory.isFile()) {

 printUsage("slice");

 throw new IllegalArgumentException("The taxa file you

supplied (option -tf) is not a file: " + TaxaListFile);

 }

 //verify and create sub-taxalist

 //create taxa filtered genotype table

 try {

 BufferedReader br = new BufferedReader(new

FileReader(TaxaListFile), 65536);

 String temp;

 int currLine = 0;

 while (((temp = br.readLine()) != null)) {

 if (!temp.trim().isEmpty())

 {

 TaxaArrayList.add(temp.trim());

 currLine++;

 }

 }

 } catch (Exception e) {

 System.out.println("Couldn't open taxa file to read taxa

list: " + e);

 }

 }

 else if (myArgsEngine.getBoolean("-tl"))

 {

 String TaxaListStr = myArgsEngine.getString("-tf");

 if (TaxaListStr.equalsIgnoreCase("all"))

 {

 TaxaArrayList.add("all");

 }

 else

 {

 String[] wordList = TaxaListStr.split(";");

 TaxaArrayList.addAll(Arrays.asList(wordList));

 }

 }

 else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify the file

with taxa list (option -tf).");

 }

www.manaraa.com

41

 if (myArgsEngine.getBoolean("-ch")) {

 ChromosomeStr = myArgsEngine.getString("-ch");

 } else {

 if ((myArgsEngine.getBoolean("-start")) ||

(myArgsEngine.getBoolean("-end")))

 {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

chromosome name (option -ch).");

 }

 else

 {

 ChromosomeStr = "all";

 }

 }

 if (myArgsEngine.getBoolean("-start")) {

 StartPhysicalPosition =

Integer.parseInt(myArgsEngine.getString("-start"));

 }

 if (myArgsEngine.getBoolean("-end")) {

 EndPhysicalPosition =

Integer.parseInt(myArgsEngine.getString("-end"));

 }

 //create a genotypetable from source

 GenotypeTable source_gt_table = null;

 if (source_file_type.equalsIgnoreCase("hdf5"))

 {

 source_gt_table =

GenotypeTableBuilder.getInstance(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("hapmap"))

 {

 source_gt_table = ImportUtils.readFromHapmap(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("vcf"))

 {

 source_gt_table = ImportUtils.readFromVCF(source_file, null,

false);

 }

 GenotypeTable gt_taxa_filtered = null ;

 //if TaxaListString=all or not specified, all taxa included

 if ((TaxaArrayList.get(0).equalsIgnoreCase("all")) ||

(TaxaArrayList.size()==0))

 {

 gt_taxa_filtered = source_gt_table;

 }

 //if TaxaListString specified, create subset

www.manaraa.com

42

 else

 {

 TaxaList source_taxa_list = source_gt_table.taxa();

 TaxaList dest_taxa_list=null;

 TaxaListBuilder dest_taxa_list_builder = new

TaxaListBuilder();

 ArrayList<String> unknow_taxa = new ArrayList<String>();

 for (int i =0; i<TaxaArrayList.size(); i++)

 {

 if (TaxaArrayList.get(i).matches(".*\\w.*"))

 {

 int itaxa_index =

source_taxa_list.indexOf(TaxaArrayList.get(i));

 if (itaxa_index>=0)

 {

dest_taxa_list_builder.add(source_taxa_list.get(itaxa_index));

 }

 else

 {

 unknow_taxa.add(TaxaArrayList.get(i));

 }

 }

 }

 dest_taxa_list = dest_taxa_list_builder.build();

 if (unknow_taxa.size()>0)

 {

 String errmsg = "-1 -1\nUnknown taxa names:\n";

 for (int i=0; i<unknow_taxa.size(); i++)

 {

 errmsg += unknow_taxa.get(i) + "\n";

 }

 return errmsg;

 }

 gt_taxa_filtered =

FilterGenotypeTable.getInstance(source_gt_table, dest_taxa_list);

 }

 //create sites filtered genotype table

 GenotypeTable gt_taxa_sites_filtered = null;

 //create position filtered genotype table

 if (ChromosomeStr.toLowerCase().equalsIgnoreCase("all"))

 {

 gt_taxa_sites_filtered = gt_taxa_filtered;

 }

 else

 {

 Chromosome ch = source_gt_table.chromosome(ChromosomeStr);

 if (ch == null)

 {

 return "-1 -1\n" + "The chromosome name '" +

ChromosomeStr + "' is not recognized\n";

 }

 if ((StartPhysicalPosition==0) || (EndPhysicalPosition==0))

 {

www.manaraa.com

43

 gt_taxa_sites_filtered =

FilterGenotypeTable.getInstance(gt_taxa_filtered, ch);

 }

 else

 {

 gt_taxa_sites_filtered =

FilterGenotypeTable.getInstance(gt_taxa_filtered, ch,

StartPhysicalPosition, EndPhysicalPosition);

 }

 }

 BufferedWriter writer = null;

 try {

 File outFile = new File(dest_file + ".txt");

 writer = new BufferedWriter(new

FileWriter(outFile));

 System.out.println(outFile.getCanonicalPath());

 writer.write("Selected Taxa : " +

gt_taxa_sites_filtered.taxaName(0));

 writer.write("\nSelected Chromosome : " +

gt_taxa_sites_filtered.chromosome(ChromosomeStr).toString());

 writer.write("\nSelected Position : " +

StartPhysicalPosition);

 // Get the Unique site number for the specific physical

position and specific Chromosome.

 int site =

source_gt_table.siteOfPhysicalPosition(StartPhysicalPosition,

gt_taxa_sites_filtered.chromosome(ChromosomeStr));

 writer.write("\nSite Value for the selected Chromosome &

Position : " + site);

 writer.write("\nGenotype Present at the selected

Chromosome & Position in the selected Taxa : " +

gt_taxa_sites_filtered.genotypeAsString(0,0));

 writer.write("\nGenotype byte value : " +

gt_taxa_sites_filtered.genotype(0,0));

 byte[] allGenotypeDiploidValues =

source_gt_table.genotypeAllTaxa(site);

 byte genotypeDiploidValueAtSpecificPosition =

gt_taxa_sites_filtered.genotype(0,0);

 BitSet matchedTaxa =

GenotypeTableUtils.calcBitPresenceOfDiploidValueFromGenotype(allGenotyp

eDiploidValues, genotypeDiploidValueAtSpecificPosition);

 int[] matchedPositions =

matchedTaxa.getIndicesOfSetBits();

 writer.write("\nNumber of matches : " +

matchedPositions.length);

 writer.write("\nList of all Taxa containing the same

Genotype at the same Chromosome & Position : ");

 for (int i : matchedPositions)

 {

 writer.write("\n" + source_gt_table.taxaName(i));

www.manaraa.com

44

 }

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 finally

 {

 try {

 writer.close();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 System.out.println("Done");

 return "";

 }

 private static String sliceRangeNuke(String[] args)

 {

 //get parameters

 ArgsEngine myArgsEngine = new ArgsEngine();

 myArgsEngine.add("-sf", "--sourcefile", true);

 myArgsEngine.add("-st", "--sourcefile-type", true);

 myArgsEngine.add("-df", "--destinationfile", true);

 myArgsEngine.add("-dt", "--destinationfile-type", true);

 myArgsEngine.add("-tf", "--taxa-file", true);

 myArgsEngine.add("-tl", "--taxa-list", true);

 myArgsEngine.add("-ch", "--chromosome", true);

 myArgsEngine.add("-start", "--chr-start", true);

 myArgsEngine.add("-end", "--chr-end", true);

 myArgsEngine.add("-bf", "--build-file", false);

 myArgsEngine.parse(args);

 boolean buildfile = false;

 String source_file = null;

 String source_file_type = null;

 String dest_file = null;

 String dest_file_type=null;

 String TaxaListFile=null;

 ArrayList<String> TaxaArrayList = new ArrayList<String>();

 String ChromosomeStr=null;

 int StartPhysicalPosition = 0;

 int EndPhysicalPosition = 0;

 if (myArgsEngine.getBoolean("-bf"))

 {

 buildfile = true;

 }

 if (myArgsEngine.getBoolean("-sf")) {

 source_file = myArgsEngine.getString("-sf");

 } else {

 printUsage("slice");

www.manaraa.com

45

 throw new IllegalArgumentException("Please specify a source

file (option -sf).");

 }

 if (myArgsEngine.getBoolean("-st")) {

 source_file_type = myArgsEngine.getString("-st");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a source

file type (option -st).");

 }

 if (buildfile)

 {

 if (myArgsEngine.getBoolean("-df")) {

 dest_file = myArgsEngine.getString("-df");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

destination file (option -df).");

 }

 if (myArgsEngine.getBoolean("-dt")) {

 dest_file_type = myArgsEngine.getString("-dt");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

destination file type (option -dt).");

 }

 }

 if (myArgsEngine.getBoolean("-tf"))

 {

 TaxaListFile = myArgsEngine.getString("-tf");

 File outDirectory = new File(TaxaListFile);

 if (!outDirectory.isFile()) {

 printUsage("slice");

 throw new IllegalArgumentException("The taxa file you

supplied (option -tf) is not a file: " + TaxaListFile);

 }

 //verify and create sub-taxalist

 //create taxa filtered genotype table

 try {

 BufferedReader br = new BufferedReader(new

FileReader(TaxaListFile), 65536);

 String temp;

 int currLine = 0;

 while (((temp = br.readLine()) != null)) {

 if (!temp.trim().isEmpty())

 {

 TaxaArrayList.add(temp.trim());

 currLine++;

 }

 }

www.manaraa.com

46

 } catch (Exception e) {

 System.out.println("Couldn't open taxa file to read taxa

list: " + e);

 }

 }

 else if (myArgsEngine.getBoolean("-tl"))

 {

 String TaxaListStr = myArgsEngine.getString("-tf");

 if (TaxaListStr.equalsIgnoreCase("all"))

 {

 TaxaArrayList.add("all");

 }

 else

 {

 String[] wordList = TaxaListStr.split(";");

 TaxaArrayList.addAll(Arrays.asList(wordList));

 }

 }

 else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify the file

with taxa list (option -tf).");

 }

 if (myArgsEngine.getBoolean("-ch")) {

 ChromosomeStr = myArgsEngine.getString("-ch");

 } else {

 if ((myArgsEngine.getBoolean("-start")) ||

(myArgsEngine.getBoolean("-end")))

 {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

chromosome name (option -ch).");

 }

 else

 {

 ChromosomeStr = "all";

 }

 }

 if (myArgsEngine.getBoolean("-start")) {

 StartPhysicalPosition =

Integer.parseInt(myArgsEngine.getString("-start"));

 }

 if (myArgsEngine.getBoolean("-end")) {

 EndPhysicalPosition =

Integer.parseInt(myArgsEngine.getString("-end"));

 }

 //create a genotypetable from source

 GenotypeTable source_gt_table = null;

 if (source_file_type.equalsIgnoreCase("hdf5"))

 {

 source_gt_table =

GenotypeTableBuilder.getInstance(source_file);

 }

www.manaraa.com

47

 else if (source_file_type.equalsIgnoreCase("hapmap"))

 {

 source_gt_table = ImportUtils.readFromHapmap(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("vcf"))

 {

 source_gt_table = ImportUtils.readFromVCF(source_file, null,

false);

 }

 GenotypeTable gt_taxa_filtered = null ;

 //if TaxaListString=all or not specified, all taxa included

 if ((TaxaArrayList.get(0).equalsIgnoreCase("all")) ||

(TaxaArrayList.size()==0))

 {

 gt_taxa_filtered = source_gt_table;

 }

 //if TaxaListString specified, create subset

 else

 {

 TaxaList source_taxa_list = source_gt_table.taxa();

 TaxaList dest_taxa_list=null;

 TaxaListBuilder dest_taxa_list_builder = new

TaxaListBuilder();

 ArrayList<String> unknow_taxa = new ArrayList<String>();

 for (int i =0; i<TaxaArrayList.size(); i++)

 {

 if (TaxaArrayList.get(i).matches(".*\\w.*"))

 {

 int itaxa_index =

source_taxa_list.indexOf(TaxaArrayList.get(i));

 if (itaxa_index>=0)

 {

dest_taxa_list_builder.add(source_taxa_list.get(itaxa_index));

 }

 else

 {

 unknow_taxa.add(TaxaArrayList.get(i));

 }

 }

 }

 dest_taxa_list = dest_taxa_list_builder.build();

 if (unknow_taxa.size()>0)

 {

 String errmsg = "-1 -1\nUnknown taxa names:\n";

 for (int i=0; i<unknow_taxa.size(); i++)

 {

 errmsg += unknow_taxa.get(i) + "\n";

 }

www.manaraa.com

48

 return errmsg;

 }

 gt_taxa_filtered =

FilterGenotypeTable.getInstance(source_gt_table, dest_taxa_list);

 }

 //create sites filtered genotype table

 GenotypeTable gt_taxa_sites_filtered = null;

 //create position filtered genotype table

 if (ChromosomeStr.toLowerCase().equalsIgnoreCase("all"))

 {

 gt_taxa_sites_filtered = gt_taxa_filtered;

 }

 else

 {

 Chromosome ch = source_gt_table.chromosome(ChromosomeStr);

 if (ch == null)

 {

 return "-1 -1\n" + "The chromosome name '" +

ChromosomeStr + "' is not recognized\n";

 }

 if ((StartPhysicalPosition==0) || (EndPhysicalPosition==0))

 {

 gt_taxa_sites_filtered =

FilterGenotypeTable.getInstance(gt_taxa_filtered, ch);

 }

 else

 {

 gt_taxa_sites_filtered =

FilterGenotypeTable.getInstance(gt_taxa_filtered, ch,

StartPhysicalPosition, EndPhysicalPosition);

 }

 }

 BufferedWriter writer = null;

 try {

 File outFile = new File(dest_file + ".txt");

 writer = new BufferedWriter(new

FileWriter(outFile));

 System.out.println(outFile.getCanonicalPath());

 writer.write("Selected Taxa : " +

gt_taxa_sites_filtered.taxaName(0));

 writer.write("\nSelected Chromosome : " +

gt_taxa_sites_filtered.chromosome(ChromosomeStr).toString());

 writer.write("\nSelected Positions : ");

 ArrayList sites = new ArrayList<Integer>();

 int c=0;

 for (int i :

gt_taxa_sites_filtered.physicalPositions())

 {

 sites.add(source_gt_table.siteOfPhysicalPosition(i,

gt_taxa_sites_filtered.chromosome(ChromosomeStr)));

 writer.write("\n" + i + " - Site Value -

" + sites.get(c) +" - Genotype present - " +

www.manaraa.com

49

gt_taxa_sites_filtered.genotypeAsString(0,c) + " - Byte Value - " +

gt_taxa_sites_filtered.genotype(0,c));

 c++;

 }

 ArrayList<BitSet> allMatchs = new

ArrayList<BitSet>();

 for (int i = 0; i<c; i++)

 {

 byte

genotypeDiploidValueAtSpecificPosition =

gt_taxa_sites_filtered.genotype(0,i);

 if

(genotypeDiploidValueAtSpecificPosition == -1) break;

 byte[] allGenotypeDiploidValues =

source_gt_table.genotypeAllTaxa((int) sites.get(i));

 BitSet matchedTaxa =

GenotypeTableUtils.calcBitPresenceOfDiploidValueFromGenotype(allGenotyp

eDiploidValues, genotypeDiploidValueAtSpecificPosition);

 allMatchs.add(matchedTaxa);

 }

 BitSet globalMatch = allMatchs.get(0);

 for (int i=1; i<allMatchs.size(); i++)

 {

 globalMatch.and(allMatchs.get(i));

 }

 int[] matchedPositions =

globalMatch.getIndicesOfSetBits();

 writer.write("\nNumber of matches : " +

matchedPositions.length);

 writer.write("\nList of all Taxa containing the same

Genotype at the same Chromosome & Position : ");

 for (int i : matchedPositions)

 {

 writer.write("\n" + source_gt_table.taxaName(i));

 }

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 finally

 {

 try {

 writer.close();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 System.out.println("Done");

 return "";

 }

www.manaraa.com

50

 private static String dbinfo (String[] args)

 {

 //get parameters

 ArgsEngine myArgsEngine = new ArgsEngine();

 myArgsEngine.add("-sf", "--sourcefile", true);

 myArgsEngine.add("-st", "--sourcefile-type", true);

 myArgsEngine.add("-dbname", "--dbname", true);

 myArgsEngine.add("-o", "--out", true);

 myArgsEngine.parse(args);

 String source_file ="";

 String source_file_type = "";

 String dbname = "";

 String outdir = "";

 if (myArgsEngine.getBoolean("-sf")) {

 source_file = myArgsEngine.getString("-sf");

 } else {

 printUsage("dbinfo");

 throw new IllegalArgumentException("Please specify a source

file (option -sf).");

 }

 if (myArgsEngine.getBoolean("-st")) {

 source_file_type = myArgsEngine.getString("-st");

 } else {

 printUsage("dbinfo");

 throw new IllegalArgumentException("Please specify a source

file type (option -st).");

 }

 if (myArgsEngine.getBoolean("-dbname")) {

 dbname = myArgsEngine.getString("-dbname");

 } else {

 printUsage("dbinfo");

 throw new IllegalArgumentException("Please specify a

database name (option -dbname).");

 }

 if (myArgsEngine.getBoolean("-o")) {

 outdir = myArgsEngine.getString("-o");

 } else {

 outdir = ".";

 }

 //create a genotypetable from source

 GenotypeTable source_gt_table = null;

 if (source_file_type.equalsIgnoreCase("hdf5"))

 {

 source_gt_table =

GenotypeTableBuilder.getInstance(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("hapmap"))

 {

 source_gt_table = ImportUtils.readFromHapmap(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("vcf"))

 {

www.manaraa.com

51

 source_gt_table = ImportUtils.readFromVCF(source_file,

null, false);

 }

 BufferedWriter bw = null;

 //write the taxa file

 try {

 bw = Utils.getBufferedWriter(outdir + "/" + dbname +

".taxainfo");

 TaxaList taxalist = source_gt_table.taxa();

 for (int i=0; i<taxalist.size(); i++)

 {

 Taxon t = taxalist.get(i);

 Map.Entry<String,String>[] tannotations =

t.getAnnotation().getAllAnnotationEntries(); //

t.getAllAnnotationEntries();

 if (tannotations.length>0)

 {

 for (Map.Entry<String,String> ta:tannotations)

 {

 bw.write(dbname + "\t" + t.getName() + "\t" +

ta.getKey() + "\t" + ta.getValue() + "\n");

 }

 }

 else

 {

 bw.write(dbname + "\t" + t.getName() + "\t" + "" +

"\t" + "" + "\n");

 }

 }

 bw.flush();

 bw.close();

 } catch (Exception e) {

 e.printStackTrace();

 throw new IllegalArgumentException("Error writing dbinfo

taxainfo file: " + outdir + "/" + dbname + ".taxainfo " + ": " +

ExceptionUtils.getExceptionCauses(e));

 } finally {

 try {

 bw.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 //write chromosome file

 try {

 bw = Utils.getBufferedWriter(outdir + "/" + dbname +

".chrinfo");

 Chromosome[] chrlist = source_gt_table.chromosomes();

 for (int i=0; i<chrlist.length; i++)

 {

 Chromosome c = chrlist[i];

 int sitecount = source_gt_table.chromosomeSiteCount(c);

 //int[] firstlast =

source_gt_table.firstLastSiteOfChromosome(c);

www.manaraa.com

52

 bw.write("\t" + dbname + "\t" + c.getName() + "\t" +

c.getLength() + "\t" + sitecount + "\n");

 }

 bw.flush();

 bw.close();

 } catch (Exception e) {

 e.printStackTrace();

 throw new IllegalArgumentException("Error writing chrinfo

file: " + outdir + "/" + dbname + ".chrinfo " + ": " +

ExceptionUtils.getExceptionCauses(e));

 } finally {

 try {

 bw.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 //write dbinfo

 try {

 bw = Utils.getBufferedWriter(outdir + "/" + dbname +

".dbinfo");

 String genomeversion = source_gt_table.genomeVersion();

 int hasdepth =0;

 if (source_gt_table.hasDepth())

 {

 hasdepth=1;

 }

 String date_created = "";

 String tassel_version = "";

 String description = "DB description unavailable.";

 bw.write("\t" + dbname + "\t" + description + "\t" +

genomeversion + "\t" + source_file + "\t" + source_file_type + "\t" +

date_created + "\t" + hasdepth + "\t" + tassel_version + "\n");

 bw.flush();

 bw.close();

 } catch (Exception e) {

 e.printStackTrace();

 throw new IllegalArgumentException("Error writing dbinfo

dbinfo file: " + outdir + "/" + dbname + "dbinfo " + ": " +

ExceptionUtils.getExceptionCauses(e));

 } finally {

 try {

 bw.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 return "done";

 }

 private static String slice (String[] args)

 {

 //get parameters

 ArgsEngine myArgsEngine = new ArgsEngine();

 myArgsEngine.add("-sf", "--sourcefile", true);

 myArgsEngine.add("-st", "--sourcefile-type", true);

www.manaraa.com

53

 myArgsEngine.add("-df", "--destinationfile", true);

 myArgsEngine.add("-dt", "--destinationfile-type", true);

 myArgsEngine.add("-tf", "--taxa-file", true);

 myArgsEngine.add("-tl", "--taxa-list", true);

 myArgsEngine.add("-ch", "--chromosome", true);

 myArgsEngine.add("-start", "--chr-start", true);

 myArgsEngine.add("-end", "--chr-end", true);

 myArgsEngine.add("-bf", "--build-file", false);

 myArgsEngine.parse(args);

 boolean buildfile = false;

 String source_file = null;

 String source_file_type = null;

 String dest_file = null;

 String dest_file_type=null;

 String TaxaListFile=null;

 ArrayList<String> TaxaArrayList = new ArrayList<String>();

 String ChromosomeStr=null;

 int StartPhysicalPosition = 0;

 int EndPhysicalPosition = 0;

 if (myArgsEngine.getBoolean("-bf"))

 {

 buildfile = true;

 }

 if (myArgsEngine.getBoolean("-sf")) {

 source_file = myArgsEngine.getString("-sf");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a source

file (option -sf).");

 }

 if (myArgsEngine.getBoolean("-st")) {

 source_file_type = myArgsEngine.getString("-st");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a source

file type (option -st).");

 }

 if (buildfile)

 {

 if (myArgsEngine.getBoolean("-df")) {

 dest_file = myArgsEngine.getString("-df");

 } else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

destination file (option -df).");

 }

 if (myArgsEngine.getBoolean("-dt")) {

 dest_file_type = myArgsEngine.getString("-dt");

 } else {

 printUsage("slice");

www.manaraa.com

54

 throw new IllegalArgumentException("Please specify a

destination file type (option -dt).");

 }

 }

 if (myArgsEngine.getBoolean("-tf"))

 {

 TaxaListFile = myArgsEngine.getString("-tf");

 File outDirectory = new File(TaxaListFile);

 if (!outDirectory.isFile()) {

 printUsage("slice");

 throw new IllegalArgumentException("The taxa file you

supplied (option -tf) is not a file: " + TaxaListFile);

 }

 //verify and create sub-taxalist

 //create taxa filtered genotype table

 try {

 BufferedReader br = new BufferedReader(new

FileReader(TaxaListFile), 65536);

 String temp;

 int currLine = 0;

 while (((temp = br.readLine()) != null)) {

 if (!temp.trim().isEmpty())

 {

 TaxaArrayList.add(temp.trim());

 currLine++;

 }

 }

 } catch (Exception e) {

 System.out.println("Couldn't open taxa file to read

taxa list: " + e);

 }

 }

 else if (myArgsEngine.getBoolean("-tl"))

 {

 String TaxaListStr = myArgsEngine.getString("-tf");

 if (TaxaListStr.equalsIgnoreCase("all"))

 {

 TaxaArrayList.add("all");

 }

 else

 {

 String[] wordList = TaxaListStr.split(";");

 TaxaArrayList.addAll(Arrays.asList(wordList));

 }

 }

 else {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify the file

with taxa list (option -tf).");

 }

 if (myArgsEngine.getBoolean("-ch")) {

 ChromosomeStr = myArgsEngine.getString("-ch");

www.manaraa.com

55

 } else {

 if ((myArgsEngine.getBoolean("-start")) ||

(myArgsEngine.getBoolean("-end")))

 {

 printUsage("slice");

 throw new IllegalArgumentException("Please specify a

chromosome name (option -ch).");

 }

 else

 {

 ChromosomeStr = "all";

 }

 }

 if (myArgsEngine.getBoolean("-start")) {

 StartPhysicalPosition =

Integer.parseInt(myArgsEngine.getString("-start"));

 }

 if (myArgsEngine.getBoolean("-end")) {

 EndPhysicalPosition =

Integer.parseInt(myArgsEngine.getString("-end"));

 }

 //create a genotypetable from source

 GenotypeTable source_gt_table = null;

 if (source_file_type.equalsIgnoreCase("hdf5"))

 {

 source_gt_table =

GenotypeTableBuilder.getInstance(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("hapmap"))

 {

 source_gt_table = ImportUtils.readFromHapmap(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("vcf"))

 {

 source_gt_table = ImportUtils.readFromVCF(source_file,

null, false);

 }

 GenotypeTable gt_taxa_filtered = null ;

 //if TaxaListString=all or not specified, all taxa included

 if ((TaxaArrayList.get(0).equalsIgnoreCase("all")) ||

(TaxaArrayList.size()==0))

 {

 gt_taxa_filtered = source_gt_table;

 }

 //if TaxaListString specified, create subset

 else

 {

www.manaraa.com

56

 TaxaList source_taxa_list = source_gt_table.taxa();

 TaxaList dest_taxa_list=null;

 TaxaListBuilder dest_taxa_list_builder = new

TaxaListBuilder();

 ArrayList<String> unknow_taxa = new ArrayList<String>();

 for (int i =0; i<TaxaArrayList.size(); i++)

 {

 if (TaxaArrayList.get(i).matches(".*\\w.*"))

 {

 int itaxa_index =

source_taxa_list.indexOf(TaxaArrayList.get(i));

 if (itaxa_index>=0)

 {

dest_taxa_list_builder.add(source_taxa_list.get(itaxa_index));

 }

 else

 {

 unknow_taxa.add(TaxaArrayList.get(i));

 }

 }

 }

 dest_taxa_list = dest_taxa_list_builder.build();

 if (unknow_taxa.size()>0)

 {

 String errmsg = "-1 -1\nUnknown taxa names:\n";

 for (int i=0; i<unknow_taxa.size(); i++)

 {

 errmsg += unknow_taxa.get(i) + "\n";

 }

 return errmsg;

 }

 gt_taxa_filtered =

FilterGenotypeTable.getInstance(source_gt_table, dest_taxa_list);

 }

 //create sites filtered genotype table

 GenotypeTable gt_taxa_sites_filtered = null;

 //create position filtered genotype table

 if (ChromosomeStr.toLowerCase().equalsIgnoreCase("all"))

 {

 gt_taxa_sites_filtered = gt_taxa_filtered;

 }

 else

 {

 Chromosome ch = source_gt_table.chromosome(ChromosomeStr);

 if (ch == null)

 {

 return "-1 -1\n" + "The chromosome name '" +

ChromosomeStr + "' is not recognized\n";

 }

 if ((StartPhysicalPosition==0) || (EndPhysicalPosition==0))

 {

www.manaraa.com

57

 gt_taxa_sites_filtered =

FilterGenotypeTable.getInstance(gt_taxa_filtered, ch);

 }

 else

 {

 gt_taxa_sites_filtered =

FilterGenotypeTable.getInstance(gt_taxa_filtered, ch,

StartPhysicalPosition, EndPhysicalPosition);

 }

 }

 String return_Values = "";

 if (gt_taxa_sites_filtered == null)

 {

 return "-1 -1\nNo data after filtering!\n";

 }

 else

 {

 return_Values= gt_taxa_sites_filtered.taxa().size() + " " +

gt_taxa_sites_filtered.positions().size();

 }

 if (buildfile)

 {

 if (dest_file_type.equalsIgnoreCase("hdf5"))

 {

 ExportUtils.writeGenotypeHDF5(gt_taxa_sites_filtered,

dest_file, source_gt_table.hasDepth());

 }

 else if (dest_file_type.equalsIgnoreCase("hapmap"))

 {

 ExportUtils.writeToHapmap(gt_taxa_sites_filtered,

dest_file);

 }

 else if (dest_file_type.equalsIgnoreCase("vcf"))

 {

 ExportUtils.writeToVCF(gt_taxa_sites_filtered,

dest_file, source_gt_table.hasDepth());

 }

 else if (dest_file_type.equalsIgnoreCase("plink"))

 {

 ExportUtils.writeToPlink(gt_taxa_sites_filtered,

dest_file, ' ');

 }

 else

 {

 //System.err.println ("File format '" + dest_file_type

+ "' not recognized!");

 return "-1 -1\n" + "Output file format '" +

dest_file_type + "' not recognized!";

 }

 }

 return return_Values;

 }

www.manaraa.com

58

 private static String[] get_taxa_list (String[] args)

 {

 ArgsEngine myArgsEngine = new ArgsEngine();

 myArgsEngine.add("-sf", "--sourcefile", true);

 myArgsEngine.add("-st", "--sourcefile-type", true);

 myArgsEngine.parse(args);

 String source_file = null;

 String source_file_type = null;

 if (myArgsEngine.getBoolean("-sf")) {

 source_file = myArgsEngine.getString("-sf");

 } else {

 printUsage("get_taxa_list");

 throw new IllegalArgumentException("Please specify a source

file (option -sf).");

 }

 if (myArgsEngine.getBoolean("-st")) {

 source_file_type = myArgsEngine.getString("-st");

 } else {

 printUsage("get_taxa_list");

 throw new IllegalArgumentException("Please specify a source

file type (option -st).");

 }

 //create a genotypetable from source

 GenotypeTable source_gt_table = null;

 if (source_file_type.equalsIgnoreCase("hdf5"))

 {

 source_gt_table =

GenotypeTableBuilder.getInstance(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("hapmap"))

 {

 source_gt_table = ImportUtils.readFromHapmap(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("vcf"))

 {

 source_gt_table = ImportUtils.readFromVCF(source_file,

null, false);

 }

 TaxaList taxalist =source_gt_table.taxa();

 int taxaCount = taxalist.size();

 String[] taxa_array = new String[taxaCount];

 for (int i=0; i<taxaCount; i++)

 {

 taxa_array[i] = taxalist.taxaName(i);

 }

 return taxa_array;

 }

 private static String[] chr_marker_info (String[] args)

 {

 ArgsEngine myArgsEngine = new ArgsEngine();

www.manaraa.com

59

 myArgsEngine.add("-sf", "--sourcefile", true);

 myArgsEngine.add("-st", "--sourcefile-type", true);

 myArgsEngine.parse(args);

 String source_file = null;

 String source_file_type = null;

 if (myArgsEngine.getBoolean("-sf")) {

 source_file = myArgsEngine.getString("-sf");

 } else {

 printUsage("chr_marker_info");

 throw new IllegalArgumentException("Please specify a source

file (option -sf).");

 }

 if (myArgsEngine.getBoolean("-st")) {

 source_file_type = myArgsEngine.getString("-st");

 } else {

 printUsage("chr_marker_info");

 throw new IllegalArgumentException("Please specify a source

file type (option -st).");

 }

 //create a genotypetable from source

 GenotypeTable source_gt_table = null;

 if (source_file_type.equalsIgnoreCase("hdf5"))

 {

 source_gt_table =

GenotypeTableBuilder.getInstance(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("hapmap"))

 {

 source_gt_table = ImportUtils.readFromHapmap(source_file);

 }

 else if (source_file_type.equalsIgnoreCase("vcf"))

 {

 source_gt_table = ImportUtils.readFromVCF(source_file,

null, false);

 }

 Chromosome[] chrlist =source_gt_table.chromosomes();

 int chrCount = chrlist.length;

 String[] chr_array = new String[chrCount];

 for (int i=0; i<chrCount; i++)

 {

 int[] firstlastpos =

source_gt_table.firstLastSiteOfChromosome(chrlist[i]);

 int firstposition =

source_gt_table.chromosomalPosition(firstlastpos[0]);

 int lastposition =

source_gt_table.chromosomalPosition(firstlastpos[1]);

 chr_array[i] = chrlist[i].getName() + "\t" +

source_gt_table.chromosomeSiteCount(chrlist[i]) + "\t" + firstposition

+ "\t" + lastposition;

 }

 return chr_array;

 }

www.manaraa.com

60

 private static void printUsage (String menuName)

 {

 if (menuName.equals("main"))

 {

 System.out.print("Usage:\tjava -jar Tassel_gt_server.jar

[options]\n\n"

 +"Command:\tslice\tcreate a slice from the genotype

file\n"

 +"\t\tdbinfo\twrite the database information into

files\n");

 }

 else if (menuName.equals("slice"))

 {

 System.out.print("Usage:\tjava -jar Tassel_gt_server.jar

slice [options]\n\n"

 +"Options\t-bf\tbuild the file. If skip, only give

the dimensions\n"

 +"\t\t-sf\tsource file name\n"

 +"\t\t-st\tsource file type (hdf5, vcf, or

hapmap)\n"

 +"\t\t-df\tdestination file name\n"

 +"\t\t-dt\tdestination file type (hdf5, vcf, hapmap

or plink)\n"

 +"\t\t-tf\ttaxa file name\n"

 +"\t\t-ch\tchromosome name\n"

 +"\t\t-start\tphysical start position on the

chromosome\n"

 +"\t\t-end\tphysical end position on the

chromosome\n"

);

 }

 else if (menuName.equals("get_taxa_list"))

 {

 System.out.print("Usage:\tjava -jar Tassel_gt_server.jar

get_taxa_list [options]\n\n"

 +"Options\t-bf\tbuild the file. If skip, only give

the dimensions\n"

 +"\t\t-sf\tsource file name\n"

 +"\t\t-st\tsource file type (hdf5, vcf, or

hapmap)\n"

);

 }

 else if (menuName.equals("dbinfo"))

 {

 System.out.print("Usage:\tjava -jar Tassel_gt_server.jar

dbinfo [options]\n\n"

 +"Options\t-bf\tbuild the file. If skip, only give

the dimensions\n"

 +"\t\t-sf\tsource file name\n"

 +"\t\t-st\tsource file type (hdf5, vcf, or

hapmap)\n"

 +"\t\t-dbname\tdatabase name in one word\n"

 +"\t\t-o\toutput directory\n"

);

 }

www.manaraa.com

61

 else if (menuName.equals("chr_marker_info"))

 {

 System.out.print("Usage:\tjava -jar Tassel_gt_server.jar

chr_marker_info [options]\n\n"

 +"Options\t-bf\tbuild the file. If skip, only give

the dimensions\n"

 +"\t\t-sf\tsource file name\n"

 +"\t\t-st\tsource file type (hdf5, vcf, or

hapmap)\n"

);

 }

 else

 {

 printUsage("main");

 }

 }

}

	2015
	Web service platform to provide access to maize diversity data
	Abhinav Vinnakota
	Recommended Citation

	tmp.1454358207.pdf.YFHrh

